Small snarks and 6-chromatic triangulations on the Klein bottle

نویسنده

  • sarah-marie belcastro
چکیده

It is known that for every nonorientable surface there are infinitely many (large) snarks that can be polyhedrally embedded on that surface. We take a dual approach to the embedding of snarks on the Klein bottle, and investigate edge-colorings of 6-chromatic triangulations of the Klein bottle. In the process, we discover the smallest snarks that can be polyhedrally embedded on the Klein bottle. Additionally, we show that every triangulation containing certain 6-critical graphs on the Klein bottle must have a Grünbaum coloring and thus cannot admit a dual embedded snark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-Chromatic even triangulations on the Klein bottle

It is known that for any closed surface F 2, every embedding on F 2 with sufficiently large representativity is 5-colorable. In this paper, we shall characterize the 5-chromatic even triangulations on the Klein bottle with high representativity. © 2005 Elsevier B.V. All rights reserved.

متن کامل

Coloring Eulerian Triangulations of the Klein Bottle

We show that an Eulerian triangulation of the Klein bottle has chromatic number equal to six if and only if it contains a complete graph of order six, and it is 5-colorable, otherwise. As a consequence of our proof, we derive that every Eulerian triangulation of the Klein bottle with facewidth at least four is 5-colorable.

متن کامل

Chromatic numbers of 6-regular graphs on the Klein bottle

In this paper, we determine chromatic numbers of all 6-regular loopless graphs on the Klein bottle. As a consequence, it follows that every simple 6-regular graph on the Klein bottle is 5-colorable.

متن کامل

Note on the irreducible triangulations of the Klein bottle

We give the complete list of the 29 irreducible triangulations of the Klein bottle. We show how the construction of Lawrencenko and Negami, which listed only 25 such irreducible triangulations, can be modified at two points to produce the 4 additional irreducible triangulations of the Klein bottle.

متن کامل

K6-Minors in Triangulations on the Klein Bottle

In this paper, we shall characterize triangulations on the Klein bottle without K6-minors. Our characterization implies that every 5-connected triangulation on the Klein bottle has a K6-minor. The connectivity “5” is best possible in a sense that there is a 4-connected triangulation on the Klein bottle without K6-minors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016